
C)ne). r\,~everthe1es:~,.

the resources for the of
u:.:e C)'!; +he FDT LC)TOS

netvvork forrnal LCTOS.

and also
is used.

This vvork is organized as follows: Section 2 states a sumrnary of the issues related to the
design. In Section 3 a surmnary of LOTOS is presented. In Section a managed

is described precisely in LOTOS. Finally, in Section 5 is shown an evalua1ion of the present
introducing the conclusion and suggestions for forthcoming works. Section 6 are the acknowledgernents
and the bibliographic references (Section 7).

1 MSc. in Computer Science (UFSC, 1995). Researcher of CNPq/ProTeM-CC/PLAGERE Project.
2 PostGraduate Student on Computer Science Course at UFSC.
3 PostGraduate Student on Computer Science Course at UFSC. CAPES scholarship.
4 Dr. in Electrical Engineering (UFPB, 1991). Local Coordinator (UFSC) of CNPq/ProTeM-CC/PLAGERE Project.
5 Dr. in Computer Science (U. Paul Sabatier, 1991). National Coordinator of CNPq/ProTeM-CC/PLAGERE Project.

455

2. Managed Objects

Managed objects are logical representations of resources and/or available services in a computer or
telecommunicatioh network. These objects implement the interface between the network management
systems and the actual resource, encapsulatlng the details of access. In this manner the network
manager does not directly interact with the actual resources, once that this communication is
intermediated by the managed objects [RaFr 94] [DrGo 94].

For the formal specification of managed objects a definition by ISO (lnternational Organization for
Standartization) is presented in the ISO/IS 10165-4 standard, where there is a setting of guidelines for the
definition of managed objects. These guidelines received the designation of GDMO and represent the
managed objects in terms of attributes, events, operations, and behaviour [ISO 1 0165-4].

The description of managed objects is performed using the templates shown on standard form. These
templates follow the object oriented paradigm, that is, being the definition of managed object class
inherits the whole set of the definitions of its superclass [MoSt 94] [RoFr 96].

At the present time the GDMO has its usage widely employed on the specification of managed objects. lt
can be, in part, credited to the greater utilization by one of GDMO being a specific standard of ISO used
in this activity. However, as a formal specification language, GDMO is limited by not having settings that
would permit the representation of behavioural issues. Then all the definitions refering to the behaviour of
managed objects class are specified in natural language.

3. LOTOS

As previously mentioned this work propases the utilization of LOTOS for the specification of managed
objects. This formal description technique presents means for the description of data issues and
behaviours. Created with the aim of specifying services and protocols of the OSI model, LOTOS has now
been increasingly adopted [NoRi 97]. This evolution occurs due to the greater strength of the
representation of the technique, besides the ability of auxiliar tools for the design.

3.1 Notion of Process

For formally describing the behaviour of a process employing the concepts of the FDT LOTOS the
general form [ISO 8807] showed bellow must be followed:

process <identifier of the process>
[<parameters list>] :functionality:=

<expression of behaviour>
endproc

where:
parameters list- includes the connection ports with other processes

or with the enviroNment.
functionali ty - noexit for infinite processes; and exit for processes

that makes able other processes;
behaviour expression - sequence of events that determine the behaviour

of the process.

3.2 LOTOS Operators

The fdt LOTOS has a set of operators which is relatively small but of great expressivity. Sorne of these
operators are presented as follows.

456

3.2.1 Ncmdeterministic Choice

For the representation of t11e random choice among two or more events of great expressivity, the
operator [] is used on the FDT LOTOS. Thus, the expression (a[]b) represents the selection: ocurrence of
event a or of event b. A.n example of utilization of this operator can be reported in [ISO 8807]: two
independent buffers regulated by an unique process so that each buffer corresponc!s to a distinct process.

A.s the sequence of input and output events can not be determined in advance, we may llereby use the
random operator. Following is presented one of the possible specifications of this process using the FDT
LOTOS:

process two Buffers [in_a, out_a, in_b, out b] :noexit:=
in a; (in b; (out a; out b; stop

[]out b; out a; stop)
[] in_b; (in a; (out a; stop

[]::_n b; (in a; (out_b; out_a; st.op

endproc

Recursivity

[]out a; out b; stop)
[]out b; in a; out a; stop)

Some processes as have the feature of recomrnencing at the end of a sequence of events. Thís
characteristic can be noticed in several processes HBt involve computers, as in networl\

A failures management system can be described in a simplified manner as a process th&t expects the
occurrence of a failure event, índicates this to the manager, keeps for a response event, and
si1ows (or not) the solution. At the end of this sequence of events tl1e system restarts in order to
detect ot11er failures. For describing U1ese events the FDT LOTOS presents ways of representing t11e
recursivity.

The LOTOS recursivity is hereby exemplífíed wíth the process of starting, of rurming, of sw¡tcrtir.g off
a car. Clearly, when switched off, if it still has fue!, it can be started agaín. This activíty can be pe1iorrned
in LOTOS by:

process car[starts, runs, switch_off] :noexit:=
starts; runs;switch_off;car[starts, runs, switch off]

endproc

The recursivity may be stated by the TDF LOTOS putting the name of the process always after the
sequence of events.

3.2.3 Parallelism

The FDT LOTOS has the aim of specificating the distributed systems, and in the design of this sort of
system may be necessary to represent the parallelism of processes. The paralell processes can be fully
independent of each other, totally dependent or partially dependent. LOTOS supplies operators to these
three kinds of parallelism:

457

Parallelism of im:lependent processes (111): in this kind of parallelism the processes do not share any
port, that is, their events can happen in parallel, but there is not any syncronisation among the
processes.

Parallelism of fully dependent pmcesses (11): in this kind of parallelism the processes share events in
all pori:s. Thus, when an event occurs in a port of a given process, it must occurr under all the processes
that are dependent in parallel with this one.

Parallelism of partialiy dependent processes(I[... JI): the operator for representing this sort of
parallelism is called general operator of parallelism, and is represented by l[shared ports]l. Thus, the
expression Process~ 1 l[port_1 , ... , por'¡_n]l Processo_2 describes the siiuation where the processes
Processi, Process2 might be sincronized with respect to the events ocurring at the ports pori:_1, ... ,port_n.

33 LOTOS Data Types

In this section concepts for data representing using LOTOS are presented. The concepts related here do
not describe the totality of concepts, but only those used in this paper. One abstract type of data is
specified in LOTOS with a definition of data storage and operators. In the definition of the operators the
control and the image orthe operation are reported.

The name of the signature of tile datum type is given to the whole set of carriers and operators. Other
features and operators of data type can be described in LOTOS, but are not utilized in this work.

In this subsection for specifying the interaction among processes with the data transference some
characteristics existing in LOTOS are presented. Sorne of these systems require that, at the moment of
the occurrence of sorne event, data might be exported or imported from other processes. In this manner,
the FDT LOTOS includes means for data storage and transference.

The data storage is carried out in variables. These must belong to a type of data known in the
specification, and tr1ey can only to storage data of a determined type. The statement of the variable is
performed in the expression of behaviour, and has the following syntax:

event (1 1 ?) name_of the_variable: sort of the variable

In a general form, the symbols ! and ? are used for representing the input and output of data,
respectively. In this way, when a given process shares an event with another one, and performs a
changing of informations, these symbols are employed for the specification of this change.

In the specification of the output process the event is followed by the ! symbol, and the value to be
outputted. The specification of the process that is outputtíng data in the occurence of the event contains a
? symbol followed by the variable that will storage the data.

4. lOTOS Specification of Managed Objects

The ISO defines for the OSI model of network management a large set of managed objects in arder to
consider the specifications included in their standards. According with the ISO the managed objects must
be related to each other following the three inheritance, containment, and register hierarchies.

The GDMO model is established on the paradigm of objects orientation, and the inheritance hierarchy
that is specified in GDMO should follow the demanded hierarchy by ISO. In this manner the managed
object eh osen for the specification is the root object of the inheritance tree: the Top object (X. 721).

458

The specification in GDMO proposecl through the object is presented as it follovvs:

top lVlANAGED OBJECT c.:__l\SS
CHARACTERIZED BY
top Packag PACKPcGE

BEHAVIOUR
topBehaviour¡
ATTRIBUTES
objectClass GEC:,
nameBinding

CONDITIONAL PACKAGES
GET

packagesPackage PACKAGE
ATTRIBUTES pacKages GET¡
REGISTERED AS{smi2Package 16};
PRESEENT IF "if any registered package,

other than this package
has been instantiated",

allomorphicPackage PACKAGE
ATTRIBUTES
allomorphs
REGISTERED
PRESENT IF

REGISTERED AS
topBehaviour

GET;
AS{smi2Package 17};
"if an object supports allomorphism";

{smi2MObjectClass 14};
BEHAVIOUR

DEFINED AS "This is the top level of managed object class hierarchy and every other managed object
ciass is a speGialization of either this generic class (top) or a speciaiization of subclass of The
parameter miscellaneousError is to be used when a processing failure has ocurred and the error condition
encountered does not match any of object's defined specific error types.";

The specification of the componeni:s of a rnanaged object can iJe described in the of
object specification (in-line specification) or after (off-líne specification). l n the specíficalion of the
object all the packages were specified in- line, but tt-1e attríbutes specification is done clfter, and
presented below:

allomorphs ATTRIBUTE
WITH ATTRIBUTE s·:{NT.AZ Attri.bute-ASN1Module. Allomorphs;

MATCHES FOR EQUALITY, SET-COMPARISON, SET-
INTERSECTION

REGISTERED AS {smi2AttributeiD 50);
nameBinding ATTRIBUTE

WITH ATTRIBUTE SYNTAX Attribute
ASN1Module.NameBinding;

MATCHES FOR EQUALITY;
REGISTERED AS {smi2AttributeiD 63);
objectClass ATTRIBUTE

WITH ATTRIBUTE SYNTAX
Attribute-ASNlModule.ObjectClass;

MATCHES FOR EQUALITY;
REGISTERED AS { smi2AttributeiD 65);
packages ATTRIBUTE

WITH ATTRIBUTE SYNTJIJ:: Attribute-ASN1Module.Packages;
MATCHES FOF EQLA.LITY, SET-COMPARISON, SET

INTERSECTION;
REGISTERED AS {smi2AttributeiD 66);

The syntax of the attributes in ASN.1 (Abstract Syntax Notation One) are also presented:

459

Allomorphs :. : =SET OF Obj ectClass
Packages : :=SET OF OBJECT IDENTIFIER
NameBinding: :=OBJECT IDENTIFIER
ObjectClass: :~CHOICE { globalForm [O] OBJECT IDENTIFIER,

localForm [l]INTEGER

This work does not propase the utilization of LOTOS specification of the attributes for the managed
objects. In this manner it must obtain the LOTOS specification reiating to the Top objects class
behaviour, showed on the topBehaviour clause.

The first sentence contained the topBehaviour clause actually does not express behaviour, it is only a
remark describing the object classes posítion on the inheritance hierarchy. 1\levertheless, the second
sentence expresses the behaviour of these object classes. This behaviour can be seen in the Figure 1.
The TOP class receives an error message associated with a condition not recognized by its subclasses
and the miscellaneousError parameters then used.

fa il ur e ~,_ ______ T_O_P _______.J¡ par ame ter,

Figure 1 - TOP class behaviour.

The specification in LOTOS of the TOP object behaviour is presented as it follows:

specification TOP Class [failure, parameter]: noexit
behaviour

TOP[failure,parameter]
where
process TOP[failure,parameter]: noexit:=

failure? error:errorCondition;
parameter 1miscellaneousError;
TOP[failure,parameter]

endproc
endspec

5" Using LOTOS Tools for va.lidation

The Eucalyptus toolbox [Gara 96] is its a graphical user-interface (GUI) based on X-Windows. Although
the Eucalyptus toolbox groups different tools developed by different partners, extensive efforts have been
done to achieve a smooth integratíon, by making tools compatible with each other, by developing
gateways that al!ow different tools to interoperate, and by providing a unified user-interface. The
funcionalíties of the Eucalyptus toolbox include tools for:
@ analysis (contains frontend tools performing lexical, sintactic, and static semantics analysis);
11! simulation (the toolbox supports various forms of simulation, such as interactive simulation (step-by

step execution with backtracking), symbolic expansion (in which input values are handled
.symbolically), goal-oriented simulation, and random execution);

"' exl1austive verification (the toolbox allows to generate the L TS corresponding to a LOTOS description.
L TSs with millions of states and transitions can be generated, within the lirnits of memo!"'; available.
These L TSs can be analyzed and verified in severa! ways. They can be minimized and campa red
modulo various equivalence (bissimulations) and preorder relations);

"' compositional verificatíon to the well-known state explision problem, exhaustive generation of
L TSs is not always possible. The Eucalyptus toolbox allows to divide a LOTOS description into paraillel

460

processes, to u-¡e L TSs to í:hese processes, to minirníze these L TSs mo(Julo a
bissimulation relation, and to build the LTS for the whole recombiníng these reduced

" verification an alternative to avoid the stal:e
toolbox allows certain properties to be verified without generatlng the vvhole range from

simple such as cleadiock detection and search of particular execution sequt:;nces, up to
more elaborated properties such as "on the comparisons of L TSs modulo bissirnulatíon

w graph drawing toolbox contains several tools to display the L TSs from LOTOS
descriptions. For small LTSs (e.g., wíth less than one hundred states), these toois generate
automatically a PostScript representation);

" test generation (from the LOTOS descriptions, one can automatically generate test sequences, whicll
will iJe used to assess tlle of real imp!ementations with respect to the

o trace analysis (the Eucalyptus toolbox allows to verify whether a given trace (execution sequence) can
be obtained from a LOTOS description); and

"' code generation (there are compilers to translate LOTOS types and process definiHons into C code
that can be executed and/or embedded in appiication

These funcionalities are contained in ihe toois:
" CAESAR: is a that translates LOTOS descriptions into L TSs. These L TSs can be

either in lhe BCG format or in other formats used various verification tools.
CAESAR.ADT: is a compiler tllat translates the data part of LOTOS descriptíons into libraries of C
types and functions. Each LOTOS sort is translated inio an equivalenet e and eac!1 LOTOS

is translated into an equivalent e funclion (or macro-definition). The user can also decide to
hand-written C code for sorne LOTOS sorts and/or operations .

., ALDEBARAI\l: is a tooi for cornparing and reducing L TSs (or networks of
modulo various equivalenece relatios (such as strong bisimulation, observational equiv&denece, delay.
bisimulation, and safety equivalenece) and preorder relations (such as simuiation preorder and safety
preorder). For instance, one can check that the LTS of a protocol (generated using Caesar) Ls
equivalent (modulo various abstraction criteria) to the L TS representing the service of this

" OPEN/CAESAR: is an extensible environment for designing programs performing
execution, verification, and test generation. Severai application prograrns are availab!e
within the Open/Caesar framewok, including:

"' Executor: is a random execution tool; (See the Figure

Figure 5.4 - Chosing execution strategy.

., Exhibitor: seraches for execution sequences mathching a given pattern defined
expression; (See the Figure 5.5)

a regular

, Figure 5.5 - Search for Execution Sequences.

• Generator: performs reachability analysis and generates an L TS;
• Simulator: is an interactive simulator with a command-line interface;
• Terminator: is a deadlock detection tool; (See the Figure 5.6)

Figure 5.6 - Detec<;ao de deadlock.

462

·~ Xsimulator: is another interactive simulator eith a user interface basecl on
Windows.

" (Binary-Coded : is botr1 a format for H1e representation of L TSs and a collection
of libraries and píOgrams wítll this format. Compared do ASCii-based formats for
BCG format uses a binary representa1ion with compression techniques in
to 20 times) files.

® ISLA: provides a step-by-step execution mode wich alllows to simulate the sequence of
actions that are permitted by a LOTOS description. The execution of a LOTOS description can be
represented as a tre, \Nt'1ere the root of the tree is the description itself, the intermediate nodes are
bel1aviour exp~essions and the brancr1es of the tree represent LOTOS actions. The user may choose
lo simulate the whole description at once, or only parts of ít (certain processes). ,~t eacr1 step,
simulation, the user is prompted witi1 a menu of possible next actions. The user cilooses the next
action to be executed and, if the selected action requires data to be suppliecl the environment
user plays l:he role of the environment), then data must be entered for t~1e simulation to coni:inue. it is
possible to save the sequence of actions, executed up to sorne point in the tree, in the memory or in
an externa! file, thereby gaining the possibility of continuing the sirnulation, at a later from where
ií: was left off.

"' TESTGEf\J: is a tool for generating optimal test sequences from the LOTOS
in order to check the conformance of a implementc1tion to its formal
approach , combined with produces test sequences. vvhich
check t~1e conformance of a protoco! implernentation by performing a rnínirnal cost tour of the
reference L TS. This metr1od overcomes lile limited controliability and of t~1e protocol
implementation an externa! tester.

"' TETRA (Test and Trace Analyzeí): compares a given trace of ínteractions with a reference
written in LOTOS, cllecking whether an executíon of the LOTOS could
given trace. The tool allows for two modes of analysis:

~ off-line trace analysis, where the reference description is cornpiled witil th,e traces to
be analyzed, wich are written in u-1e form of LOTOS process;
on-line trace analysis, wich compiles the reference description alone and tlie
interactions of a trace one after the other as they are received from anoU,er site
executing/simulating the implementation under test. The result of a trace is eitner
"valid trace" or "invalid trace".

"' VISCOPE: is a tool for automatic display (in 2- or 3-dimensions) of L TSs. lt generales a PostScript
representation with a layout of states ancl transitions tllat make concurrent actions visible.

Using TOPO tool (www.dit.upm.es) the LOTOS specifications is translated to C code automatically.

6. Evaiuation and Conclusion

During the development of this work it was observed that the utilization of a formal technique fOí u-¡e
description of managed objects behaviour presents benefits in relation to the use of the natural language
Among these benefits the non existence of ambiguous interpretations for the same text can be quoted.
The use of LOTOS for describing behavioural issues may demand more knowledge than the simple
specification in ordinary text, however the obtained specification provides a more reliable
implementation.

The Eucalyptus toolset was very efficient in the validation processes. lt is includes a nice graphical
generation of L TSs, important proofs of absence of deadlocks, good performance in simulations
(exaustive and interative) and even so in the task to find sequences os events occourence.

As future works, it is intended to apply the concepts presented here for the specification of issues relating
to the behaviour of other objects and their implementation.

463

[AgSo94]

[DrGo94]

[DyAi 94]

[Gara 96]

[ISO 10165-4]

[ISO

[MoSt94]

[RaFr94]

[RoFr96]

464

AGOULMINE, N.; SOUZA, J.i'J.; PAVLOU, G.: "Design and impiementation of
Teiecommunication ma11agement network: system am:! information
viewpoints". In: Proceedings of the ITS'94, SBT/IEEE lnternational
Telecommunications Symposium. Rio de Janeiro, August 22-26th, pp. 342-346.

DRUMMOND, R.; GONC:ALVES JUI\JIOR, C.: "Distributed Objects in MC". 12th
SBRC Curitiba (PR), pp.188-201, 1994.

DYSART, H.; AIDAROUS, S.: "Subnetwork management and TMr\1 in evolving
networl;;". In: Proceedings of the ITS'94, SBT/IEEE lnternational
Telecommunicai:ions Symposium. Rio de Janeiro, August 22-26th, pp 337-341.

GPRA VEL, H. Cresar Aldébaran Distributed Package. Version Z. Grenoble - France.
06/12/1996.

ISO/IS 10165-4: lnformation Technology- Open Systems lnterconnection Structure
of Management lnformation - Part 4: Guide!ines for Df.rl'inition of

08/1991.

lnformation Processing System-Open Systems lnterconnection - LOTOS - A
forma! description technique based on the temporal ordering of
observational behaviour, 1988.

B. G.: "Using LOTOS on the
agents t"or networks Portuguese). Proceedings of

II'JFOWEEK- Computation Week of UFBA, pp.313-323. í 996.

MOUTINHO, C. M_ P.;STANTON, 1\Jl. A.: "Appiications 0111 inteiigent networks
management". 12th SBRC, Curitiba (PR), pp.154-172.1994.

NOTARE, M. S. M. · RISO, B. G.; LORENA, P. S.; PENNA, M. C. de 0.;
WESTPHALL, C. 8. Formal Design of a Telecommunications f\Jetworks
Management System. IEEE ISCC'97 - lnternational Syrnposiurn on
Cornputers and Comrnunications, Alexandria, Egito, 07/1997. (Trabalho aceito).

RAY, P.; FRY, M.: "interpreted service management within heterogeneous
environments". In: Proceedíngs of the ITS'94, SBT/IEEE lnternational
Telecommunications Symposium. Rio de Janeiro, August 22-26th, pp.347-351.

RODRIGUES, R.; FREIRE, P.; OLIVEIRA, M.: "A methodology for the
deveiopment of Applications on the OSiMIS p!atform based on Configuration
paradigm". 14th SBRC, Fortaleza (CE), pp.411-432, 1996.

